
January 2010 FoxRockX Page 13

When SQL commands were added in FoxPro 2, it
didn't take me long to see that they could make
writing code easier. SQL SELECT, in particular,
was very appealing since it made it possible to re-
trieve the data I needed by specifying what I wan-
ted rather than how to find it.
Over the years, VFP's SQL commands have become
an important part of my programming arsenal. The
list of commands supported and the functionality
of the individual commands has increased over the
years.

FoxPro 2 included CREATE TABLE, CREATE
CURSOR, SELECT and INSERT. VFP 3 added
ALTER TABLE, SQL DELETE and UPDATE com-
mands.

After VFP 3, the SQL commands stayed pretty
much the same until VFP 8, which introduced a
few new clauses, and some new rules, as well. VFP
9 added significant functionality to the SELECT,
 DELETE and UPDATE commands.

In this article, I'll show you how some of the
recent changes can simplify your code.

Adding query data to a table or
cursor
VFP 8 added two new ways to insert data into a
table or cursor with the SQL INSERT command.
One is a standard SQL capability, while the other is
a VFP-specific extension.

The standard item lets you run a query and add
the query results directly to a cursor or table. The
syntax is shown in Listing 1.

Listing 1. VFP 8 added the INSERT INTO SELECT syntax that
lets you gather a set of data and add it to an existing table in
one step.
INSERT INTO <table> [(<field list>])
 SELECT <field list>
 FROM <tables and join conditions>
 <rest of query as usual>

Previously, this had to be done in two steps,
first running the query, and then using APPEND
FROM to add the data.

For example, one of my responsibilities for the
Southwest Fox conference is compiling the confer-
ence evaluation results and producing the various
reports we draw from them. The first step, though,
is data entry. Doug Hennig, Rick Schummer, and
I each take a third of the evaluation booklets and
enter the data; it's stored, of course, in VFP tables.
Then, Doug and Rick send me their tables. I need
to combine the three sets of tables to form one com-
plete set for analysis.

Because the tables have an auto-incrementing
primary key, I can't use APPEND FROM to simply
take the tables Doug and Rick send and add them
to my table; auto-incrementing fields are read-only.
So, prior to VFP 8, this task would have required
code like Listing 2 (note that you must have SET
FULLPATH ON for this code to work).

Listing 2. Before VFP 8, grabbing data from one table and
adding it to another was a two-step process.
SELECT iTimeslot, iSpeaker, iTopic, ;
 mLikes, mDislikes, nPrepared, ;
 nKnowledge, nInteresti, nMatchDesc, ;
 nValuable, nRelevant, nAgain, ;
 mComments ;
 FROM DougSessionEval ;
 INTO CURSOR csrDougsEvals NOFILTER

SELECT SessionEval
APPEND FROM DBF("csrDougsEvals")

With the new syntax, I can pull this into a single
command, as in Listing 3.

Listing 3. In VFP 8 and 9, you can collect the data and insert it
in a single step.
INSERT INTO SessionEval ;
 (iTimeslot, iSpeaker, iTopic, ;
 mLikes, mDislikes, nPrepared, ;
 nKnowledge, nInteresti, nMatchDesc, ;
 nValuable, nRelevant, nAgain, ;
 mComments) ;
 SELECT iTimeslot, iSpeaker, iTopic, ;
 mLikes, mDislikes, nPrepared, ;
 nKnowledge, nInteresti, nMatchDesc, ;
 nValuable, nRelevant, nAgain, ;
 mComments ;
 FROM DougSessionEval

Take advantage of SQL im-
provements!
Recent versions of VFP add significant functionality to VFP's
SQL commands. Using these abilities can improve your code.

Tamar E. Granor, Ph.D.

Page 14 FoxRockX January 2010

As in the old version, I have to list all the fields
I want in order to avoid trying to write to the
 auto-incrementing primary key field. However,
this version avoids opening an intermediate cursor
and leaving it open.

The second change to INSERT is the addition
of the FROM NAME clause. This allows you to add
data to a cursor or table directly from an object.
The object's properties are mapped to same-named
fields. The syntax is shown in Listing 4.

Listing 4. The new FROM NAME clause for INSERT lets you
move data directly from objects into a cursor or table.
INSERT INTO <table> FROM NAME <object>

I tend to use this approach more in manipula-
tion of data from the Command Window than in
applications (though I have used it there). I find it
most useful when I need to make a near-copy of an
existing record, as in Listing 5, or when I want to
copy a record from one table to another with the
same structure, as in Listing 6.

Listing 5. INSERT INTO FROM NAME is very handy for mak-
ing near-copies of existing records.
USE MyTable

* Find the right record somehow, then
SCATTER NAME oRec MEMO
WITH m.oRec
 * Change some properties/fields
ENDWITH

* Add the modified record
INSERT INTO MyTable FROM Name m.oRec

Listing 6. INSERT INTO FROM Name is also useful for moving
data from one table to another.
USE Source
SCATTER NAME oRec MEMO

INSERT INTO Dest FROM Name m.oRec

Create cursors on the fly
VFP 9 introduced a number of SQL changes. The
one I've found most useful is the ability to create
derived tables in SQL commands, especially queries.

A derived table is a query in the FROM clause
of another SQL command. It works like any other
query, except that instead of saving the results in a
cursor or table, they're used in the containing com-
mand and then discarded. The basic structure of a
query with a derived table is shown in Listing 7.

Listing 7. A derived table is a query in the FROM clause of
another SQL command.
SELECT <field list> ;
 FROM <table> ;
 JOIN (SELECT <field list> ;
 FROM <table> ;
 <additional clausess ;
) <local alias> ;
 ON <join condition> ;
 <rest of query>

As with INSERT INTO … SELECT, derived
tables let you do in one command what previously
required several. I use them extensively in prepar-
ing data for the speaker evaluation report. Listing
8 shows one example. Southwest Fox speakers are
quite competitive and want to know how they did
in comparison with their peers. So the report we
provide them includes the ranking of their sessions
and themselves overall. The query here prepares
the overall speaker rankings. The derived table
does the actual computation of the rankings; the
main query attaches that data to the speaker infor-
mation (stored in the Speaker table) and sorts in
rank order. (The record numbers in the resulting
cursor, SpeakAvgs, are what we actually report to
the speakers.)

Listing 8. The derived table in this query computes the aver-
age evaluation for each speaker, which is used to rank the
speakers.
SELECT SessAvg.iSpeaker, Speaker.cFirst, ;
 Speaker.cLast, SessAvg.nTotal ;
 FROM ;
 (SELECT iSpeaker, CNT(*), ;
 AVG(nPrepared + ;
 nKnowledge + ;
 nInteresti + ;
 nMatchDesc + ;
 nValuable + ;
 nRelevant) as nTotal;
 FROM SessionEval ;
 GROUP BY 1) SessAvg ;
 JOIN Speaker ;
 ON SessAvg.iSpeaker = Speaker.iID ;
 ORDER BY nTotal DESC ;
 INTO CURSOR SpeakAvgs

In VFP 8 and earlier, this task would have re-
quired two queries in sequence. The first query is
the one that's now the derived table, with the re-
sults stored in a cursor. Then, the second query
uses those results. Listing 9 shows the older way
to do this.

Listing 9. In VFP 8 and earlier, computing the rankings re-
quires two queries.
SELECT iSpeaker, CNT(*), ;
 AVG(nPrepared + nKnowledge + ;
 nInteresti + nMatchDesc + ;
 nValuable + nRelevant) as nTotal;
 FROM SessionEval ;
 GROUP BY 1 ;
 INTO CURSOR SessAvg

SELECT SessAvg.iSpeaker, Speaker.cFirst, ;
 Speaker.cLast, SessAvg.nTotal ;
 FROM SessAvg ;
 JOIN Speaker ;
 ON SessAvg.iSpeaker = Speaker.iID ;
 ORDER BY nTotal desc ;
 INTO CURSOR SpeakAvgs

The derived table version offers a couple of ad-
vantages. First, anything you can write as a single
query is easier to use as a view, which may be im-
portant for some situations. In addition, VFP cleans
up after derived tables. So when you run the query
in Listing 8, the only cursor it leaves open is the re-

January 2010 FoxRockX Page 15

sult, SpeakAvgs. With Listing 9, the SessAvg cursor
is open afterward as well.

To use a derived table, wrap the query in pa-
rentheses (as you generally do for sub-queries). In
addition, you must provide a local alias, that is, an
alias to use for the derived table result within the
containing command. In Listing 8, the local alias is
SessAvg. Note also that you can have multiple de-
rived tables in a single query.

Derived tables can be used in SQL DELETE
and SQL UPDATE, not just for queries. So you can
use queries to figure out which records to delete or
update.

For example, for the speaker evaluations, I have
several queries like the one in Listing 8. Another
computes the rankings for session, and a third com-
putes the overall averages for each category, which
we provide in the report as a comparison. I index
these cursors and use SET RELATION to connect
them to the driving cursor for the report (called
 SessionAvgs, it contains the average ratings for
each evaluation category for each individual ses-
sion), as shown in Listing 10.

Listing 10. The old way to connect data in two cursors for
reporting is via SET RELATION. In my code to report speaker
evaluations, these lines follow the query in Listing 8.
INDEX ON PADL(iSpeaker, 3) + PADL(iTopic,3) ;
 TAG SpeakTopic
SELECT SessionAvgs
SET RELATION TO ;
 PADL(iSpeaker,3) + PADL(iTopic,3) ;
 INTO SessAvgs ADDITIVE

However, I could instead put extra fields to
hold the rankings for each session in the driving
cursor, and use UPDATE to fill them in. Listing 11
shows how to use the UPDATE command to fill the
speaker rankings into SessionAvgs.

Listing 11. Instead of storing the speaker ranks in a separate
cursor as in Listing 8, we could stuff the results right into fields
of an overall result cursor.
UPDATE SessionAvgs ;
 SET nSpeakerRank = SpeakRank.nRank ;
 FROM (;
 SELECT iSpeaker, RECNO() as nRank ;
 FROM (SELECT iSpeaker, ;
 AVG(nPrepared + nKnowledge + ;
 nInteresti + nMatchDesc + ;
 nValuable + nRelevant) ;
 AS nTotal;
 FROM SessionEval ;
 GROUP BY 1 ;
 ORDER BY nTotal Desc ;
) ComputeSpeakAvg ;
) SpeakRank ;
 WHERE SessionAvgs.iSpeaker = ;
 SpeakRank.iSpeaker

This command actually uses two derived tables.
The inner query calculates the average total rank-
ing per speaker and puts them in descending order
with a local alias of ComputeSpeakAvg. The outer
query pulls just the speaker ID and the position of

the speaker in the list (that is, the speaker's rank)
from that result into a derived table with a local
alias of SpeakRank. Then, the UPDATE command
joins that result to the existing cursor, SessionAvgs,
based on matching the speaker ID and fills in Ses-
sionAvgs.nSpeakerRank.

Compute fields with subqueries
Starting in VFP 9, you can use a subquery in the
field list of a query, in order to compute the field
value. This capability is called projection.

Projection is most useful when you want to base
a column on filtered and/or aggregated data. For
example, projection lets me see whether speakers
do significantly differently in their first presentation
of sessions than in the second. The query in Listing
12 shows how to do this. There are four fields in the
field list. The first two are straightforward, but the
last two are nearly identical subqueries. The first
computes the average score for a given speaker in
the initial presentation of sessions; the second com-
putes the average score for the speaker in the re-
peat. (A few notes about the additional tables used
in this query. TimeSlot is a master list of available
timeslots at the conference. Each record represents
a single timeslot. Schedule links TimeSlot to the ac-
tual sessions, with one record for each presentation
of each topic. Note that to avoid additional com-
plexity, these queries take a shortcut, assuming that
the primary key in the TimeSlot table is in time-se-
quence order. It would be better, but more compli-
cated, code to actually check the field of TimeSlot
that specifies the starting time of the session.)

Listing 12.This complex looking query uses two subqueries
in the field list to compute the average rating for each speaker
in the initial presentation of a session and the average in the
repeat presentation.
SELECT iSpeaker, ;
 AVG(nPrepared + nKnowledge + ;
 nInteresti + nMatchDesc + ;
 nValuable + nRelevant) as nTotal, ;
 (SELECT AVG(nPrepared + nKnowledge + ;
 nInteresti + nMatchDesc + ;
 nValuable + nRelevant) ;
 FROM SessionEval SE ;
 WHERE SE.iSpeaker = ;
 SessionEval.iSpeaker ;
 AND SE.iTimeSlot = ;
 (SELECT MIN(TimeSlot.iID) ;
 FROM TimeSlot ;
 JOIN Schedule ;
 ON TimeSlot.iID = ;
 Schedule.iSlot ;
 WHERE Schedule.iTopic = ;
 SE.iTopic)) ;
 AS nSlot1, ;
 (SELECT AVG(nPrepared + nKnowledge + ;
 nInteresti + nMatchDesc + ;
 nValuable + nRelevant) ;
 FROM SessionEval SE ;
 WHERE SE.iSpeaker = ;
 SessionEval.iSpeaker ;
 AND SE.iTimeSlot = ;
 (SELECT MAX(TimeSlot.iID) ;
 FROM TimeSlot ;

Page 16 FoxRockX January 2010

 JOIN Schedule ;
 ON TimeSlot.iID = ;
 Schedule.iSlot ;
 WHERE Schedule.iTopic = ;
 SE.iTopic)) ;
 AS nSlot2 ;
 FROM SessionEval ;
 GROUP BY 1 ;
INTO CURSOR csrAverageByRepeat

But wait, there's more
VFP 9 introduced several other new capabilities
for SQL commands, including the ability to use
the TOP N clause in some subqueries and allow-
ing GROUP BY in correlated subqueries. If the SQL
commands are part of your VFP arsenal, be sure to
check the "SQL Language Improvements" section
of the VFP 9 help file to see what you've missed.
If the SQL commands aren't something you're us-
ing regularly, it's time to take a good, hard look at
them.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses and
other organizations. She currently focuses on working with
other developers through consulting and subcontracting.
Tamar is author or co-author of ten books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and
Taming Visual FoxPro’s SQL. Her latest collaboration
is Making Sense of Sedna and SP2, coming out this year.
Her books are available from Hentzenwerke Publishing
(www.hentzenwerke.com). Tamar is a Microsoft Support
Most Valuable Professional. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement Award.
You can reach her at tamar@thegranors.com or through
www.tomorrowssolutionsllc.com.

could be a short screencast on demonstrating how a
control was implemen ted in a production applica-
tion. A brief discussion how one of the tools saves
you an hour a month might shed some light to help
someone else get it. These stories can be told on the
various project pages.

The third important idea is one I actually have
been pushing for in the VFPX articles and sessions
I have been giving for the last three years: we need
to get project managers to promote their projects to
released status. It is true that some of the projects
are in the alpha, beta, and release candidate sta-
tus. But the fact remains many could be consid-
ered released. Project managers are suffering from
the common “but just one more thing syndrome”
like all of us have faced in our careers. What we
all need is a little reminder that we can have a 1.1
or 2.0 release in the future. I know I use several
VFPX projects in my production applications as if
they were released. On the user side I believe there

Continued from Page 1

Get on the VFPX Bandwagon
are developers who don’t want to risk something
as important as a production customer applica
tion with something not considered released. If the
status of the project was elevated to “released” it
might stimulate adoption in the community.

There were other good ideas discussed during
the meeting and things the administrators need to
get prioritized and find others to help implement.
You can watch most of the VFPX User Meeting on
SWFox TV. There was a glitch in the Internet connec-
tion during the recording so it is in two parts. Part
1 is at http://www.ustream.tv/ recorded/2366487
and Part 2 is at http://www.ustream.tv/record-
ed/2366790.

So jump on the VFPX Bandwagon and get
 using these FREE tools and components. Provide
feedback to the project teams, and if so inclined, get
involved in development or testing. VFPX is a sig-
nificant part of the future for Visual FoxPro, be a
part of it!

DOWNLOAD
Subscribers can download FR201001_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:
doughennig201001_code.zip
Source code for the article “Introduction to GDIPlusX, Part II” from Doug Hennig
vuprojecttools201001_code.zip
Source code for the article "Updating project files from the source control management" from
Venelina Jordanova und Uwe Habermann

